李慧文老师,高考指导老师,高考解读专家

高中数学基础知识-可逆矩阵的行列式

李慧文老师,高考指导老师,高考解读专家
李慧文老师
原创
2024-09-04 16:17:46

可逆矩阵的行列式

可逆矩阵与其逆矩阵是大学数学(高数)中的重点知识也是期末考试和研究生入学考试中的高频考点。本文重点来谈谈“逆矩阵的行列式值与原矩阵行列式的关系”:逆矩阵的行列式与原矩阵的行列式的乘积为1,即二者互为倒数。

可逆矩阵的行列式是什么

矩阵逆矩阵的行列式等于原矩阵行列式的倒数。

证明如下:

因为 AB=BA=E(单位阵),B是A的逆矩阵.

所以 |AB|=|BA|=1。

当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,

有 |B|=1/|A|。

逆矩阵的性质定理以及证明

性质定理:

1、可逆矩阵一定是方阵。

2、如果矩阵A是可逆的,其逆矩阵是唯一的。

3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。

5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6、两个可逆矩阵的乘积依然可逆。

7、矩阵可逆当且仅当它是满秩矩阵。

证明:

1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。

2、设B与C都为A的逆矩阵,则有B=C。

3、假设B和C均是A的逆矩阵,B=BI=B(AC)=(BA)C=IC=IC,因此某矩阵的任意两个逆矩阵相等。

4、由逆矩阵的唯一性,A-1的逆矩阵可写作(A-1)-1和A,因此相等。

矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I。

由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。

5、1)在AB=O两端同时左乘A-1(BA=O同理可证),得A-1(AB)=A-1O=O

而B=IB=(AA-1)B=A-1(AB),故B=O。

2)由AB=AC(BA=CA同理可证),AB-AC=A(B-C)=O,等式两边同左乘A-1,因A可逆AA-1=I 。

得B-C=O,即B=C。

》》重要推荐:高中数学知识汇总专题

声明:本资料整理于网络,只为高中学子学习提供帮助,希望对大家有所帮助!

欢迎来到许愿网!在这里,你可以分享你的愿望和梦想。不论是大或小,每一个愿望都值得被倾听和支持。

点击进入:许下美好心愿-许愿网

#高中数学#知识推荐
该文观点仅代表作者本人,本平台仅提供信息存储空间服务。
相关推荐
相关文章
评论区
说点什么...
点赞收藏评论